Phase Transformation of Anisotropic Shape Memory Alloys: Theory and Validation in Superelasticity
نویسندگان
چکیده
منابع مشابه
Damping Properties of Shape Memory Alloys During Phase Transformation
A high damping capacity is considered as one of the important functional properties of shape memory alloys. Those properties are related to a thermoelastic martensitic transformation. As a consequence of this transformation, the internal friction or damping can be investigated for three different states: 1. during thermal transformation cycling, 2. during martensite induced strain cycling at co...
متن کاملOn phase transformation behavior of porous Shape Memory Alloys.
This paper is concerned on the phase transformation mechanism of porous Shape Memory Alloys (SMAs). A unit-cell model is adopted to establish the constitutive relation for porous SMAs, the stress distributions, the phase distributions and the martensitic volume fractions for the model are then derived under both pure hydrostatic stress and uniaxial compression. Further, an example for the uniax...
متن کاملTransformation yield surface of shape memory alloys
Shape-memory alloys transform under stress, and this stress-induced transformation is useful for various practical applications. The stress at which the alloy transforms depends on the orientation of the stress relative to the specimen, and may be described using a transformation yield surface. This paper provides early results of a theoretical treatment of the transformation yield surface of s...
متن کاملTRANSFORMATION BEHAVIOR OF NiTi SHAPE MEMORY ALLOYS TREATED BY THERMOMECHANICAL PROCESSING USING DSC
Abstract: In the present study the effect of thermomechanical treatment (cold work and annealing) on the transformation behavior of NiTi shape memory alloys was studied. Differential scanning calorimetry was used to determine transformation temperature and its relation to precipitates and defects. Three alloys including Ti-50.3at.% Ni, Ti-50.5at.% Ni (reclamated orthodontic wires) and 50.6at...
متن کاملDirect observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.
Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Shape Memory and Superelasticity
سال: 2015
ISSN: 2199-384X,2199-3858
DOI: 10.1007/s40830-015-0027-y